Dear All, could I ask if the DWA code actually supports the extended BH model (as defined in “boson Hubbard” hamiltonian in a standard issue of models.xml)? the results I obtain seem not to depend at all on the value of the V parameter. With sparsediag I observe no such behaviour.
thebondterm contains “hopping” (proportional to t#) and interaction (proportional to V#). If I wanted to split (as the hopping is treated separately in worm-type algorithms I guess…) it into two bond-terms it seems that only the last bondterm is taken into account:
this results in t=0 result <SITETERM site="i"> <PARAMETER name="mu#" default="mu"/> <PARAMETER name="U#" default="U"/> -mu#*n(i)+U#*n(i)*(n(i)-1)/2 </SITETERM> <BONDTERM source="i" target="j"> <PARAMETER name="t#" default="0"/> -t#*(bdag(i)*b(j)+bdag(j)*b(i)) </BONDTERM> <BONDTERM source="i" target="j"> <PARAMETER name="V#" default="0"/> -V#*(n(j)*n(i)) </BONDTERM>
this in V=0 result: <SITETERM site="i"> <PARAMETER name="mu#" default="mu"/> <PARAMETER name="U#" default="U"/> -mu#*n(i)+U#*n(i)*(n(i)-1)/2 </SITETERM> <BONDTERM source="i" target="j"> <PARAMETER name="V#" default="0"/> -V#*(n(j)*n(i)) </BONDTERM> <BONDTERM source="i" target="j"> <PARAMETER name="t#" default="0"/> -t#*(bdag(i)*b(j)+bdag(j)*b(i)) </BONDTERM>
Best, Mateusz Łącki