ALPS community,
I am interested in calculating the states and the spin-spin correlation functions for a dimerized chain. This type of structure is sometimes called an alternating chain. It consists of spins coupled along one-dimension with alternating
strong and weak Heisenberg exchange parameters:
J0---J1---J0---J1---J0---
Using the tutorials and the ALPS website, I have assembled what I think are the correct UNITCELL and LATTICEGRAPH (see end of message).
Q1: Is there a way to check this definition visually? The wiki suggests the command
printgraph parameter_file
Q2: does the predefined ‘MODEL’ “spin” account for J0 and J1 exchange?
Q3: Can ‘S’ also be a conserved quantum number.
Thanks for your assistance.
Matt Stone
parms = [{
'LATTICE' : "dimechain",
'LATTICE_LIBRARY' : "latticeCN.xml",
'MODEL' : "spin",
'local_S' : 0.5,
'J0' : 1,
'J1' : 0.125,
'L' : 6,
'CONSERVED_QUANTUMNUMBERS' : 'Sz',
'MEASURE_CORRELATIONS[Diagonal spin correlations]=' : 'Sz',
'MEASURE_CORRELATIONS[Offdiagonal_spin_correlations1]' : 'Splus:Sminus',
'MEASURE_CORRELATIONS[Offdiagonal_spin_correlations2]' : ‘Sminus:Splus,
'D' : 0.0,
'h' : 0.0,
}]
<UNITCELL name="anisotropic1d" dimension="1">
<VERTEX/>
<EDGE type="0">
<SOURCE vertex="1" offset="0"/>
<TARGET vertex="1" offset="0.5"/>
</EDGE>
<EDGE type="1">
<SOURCE vertex="1" offset="0.5"/>
<TARGET vertex="1" offset="1"/>
</EDGE>
</UNITCELL>
<LATTICEGRAPH name = "dimechain" vt_name="dimechainLattice">
<FINITELATTICE>
<LATTICE ref="chain lattice"/>
<EXTENT dimension="1" size="L"/>
<BOUNDARY dimension="1" type="periodic"/>
</FINITELATTICE>
<UNITCELL ref="anisotropic1d"/>
</LATTICEGRAPH>
<!-- From the default lattices -->
<LATTICE name="chain lattice" dimension="1">
<PARAMETER name="a" default="1"/>
<BASIS><VECTOR>a</VECTOR></BASIS>
<RECIPROCALBASIS><VECTOR>2*pi/a</VECTOR></RECIPROCALBASIS>
</LATTICE>