Dear Matthias,

thank you for your quick answer. Actually I have considered both periodic and open boundary conditions.

The model I defined as follows

<SITEOPERATOR name="Sx" site="x">
  1/2*(Splus(x)+Sminus(x))
</SITEOPERATOR>

<HAMILTONIAN name="Ising">
<PARAMETER name="J" default="0"/>
<PARAMETER name="h" default="0"/>
<BASIS ref="spin"/>
<SITETERM site="i">
     J*h*2*Sz(i)
   </SITETERM>
<BONDTERM source="i" target="j">
     J*4*Sx(i)*Sx(j)
   </BONDTERM></HAMILTONIAN>


And I run the following simulations: An exact

parms = [{ 
        'LATTICE_LIBRARY'           :"/MyIsing/lattice.xml",
        'MODEL_LIBRARY'             :"/MyIsing/model.xml",
        'LATTICE'                   :"open chain lattice",
        'MODEL'                     :"Ising",
         'h'                         : 2.1,
         'J'                         : -0.5,
         'L'                         : 8
       }]
input_file = pyalps.writeInputFiles('IsingEXACT',parms)
res = pyalps.runApplication('sparsediag',input_file,writexml=True)

and a DMRG

parms = [{ 
        'LATTICE_LIBRARY'           :"/MyIsing/lattice.xml",
        'MODEL_LIBRARY'             :"/MyIsing/model.xml",
        'LATTICE'                   :"open chain lattice",
        'MODEL'                     :"Ising",
        'J'                         : -0.5,
'h'                         : 2.1,
        'SWEEPS'                    : 4,
        'NUMBER_EIGENVALUES'        : 1,
        'L'                         : 8,
        'MAXSTATES'                 : 600
       }]


The sparsediag gives me

-8.8210316277121077


and the DMRG gives me

-8.5812583500526003

with truncation error -2.2204460492503131e-16

Why the data are so distant notwithstanding the truncation error is so small, and it seems to be converged?

Kindest regards.  
 




On 14 November 2013 20:03, Matthias Troyer <troyer@phys.ethz.ch> wrote:
Dear Emanuele Levi,

It is well known that periodic boundary conditions are a problem for DMRG. You will need a large number of states ( you don't mention how many you use) and you need to sweep often.

Matthias





On Nov 14, 2013, at 10:33, Emanuele Levi <emanuele.levi@gmail.com> wrote:

Dear ALPS users,
I am checking the performance of the DMRG application of ALPS on a simple Ising chain with periodic boundary conditions.
The program seems not to be able to converge to the right ground state, even for lengths of the chain such as L=6,8,..
Comparing to the results of the sparsdiag algorithm included in the package the ground state energies are very different.

Does anyone know why it is so? 
Any idea on how to overcome this problem?

Thank you in advance.


--
Dr Emanuele Levi

emanuele.levi@gmail.com




--
Dr Emanuele Levi

emanuele.levi@gmail.com