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DMRG and periodic boundary conditions: a quantum information perspective
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We introduce a picture to analyze the density matrix renormalization group (DMRG) numerical
method from a quantum information perspective. This leads us to introduce some modifications for
problems with periodic boundary conditions in which the results are dramatically improved. The
picture also explains some features of the method in terms of entanglement and teleportation.

PACS numbers: 75.10.Jm, 03.67.Mn, 02.70.-c, 75.40.Mg

The discovery and development of the DMRG method
[1, 2] to treat quantum many–body systems has enabled
us to analyze and understand the physical properties
of certain condensed matter systems with unprecedent
precision [3]. Originally envisioned for 1D systems with
short–range interactions at zero temperatures, during the
last years this method has been successfully extended to
other situations [3]. Its mathematical foundations have
been established [4, 5] in terms of the so–called matrix
product states (MPS) [6] and by now there exists a co-
herent theoretical picture of DMRG.

At the same time, the field of Quantum Information
Theory (QIT) has emerged to describe the properties of
quantum many–body systems from a different point of
view. A theory of entanglement has been established,
and has allowed us to describe and understand phenom-
ena like teleportation [7], and to use them in the fields
of communication and computation [8]. Recently it has
been shown that QIT may also shed some new light in
our understanding of condensed matter systems [9, 10],
and, in particular, in the DMRG method [11, 12].

In this work we analyze the standard DMRG method
using a physical picture which underlies QIT concepts.
The picture has its roots in the AKLT model [13] and
allows us to understand why DMRG offers much poorer
results for problems with periodic boundary conditions
(PBC) than for those with open boundary conditions
(OBC), something which was realized at the origin of
DMRG [2]. It also gives a natural way of improving the
method for problems with PBC, in which several orders
of magnitude in accuracy can be gained. The impor-
tance of this result lies in the fact that physically PBC
are strongly preferable over OBC as boundary effects
are eliminated and finite size extrapolations can be per-
formed for much smaller system sizes.

Let us start by reviewing the simplest version of the
DMRG method for 1-D spin chains with OBC, which is
typically represented as B • B [2, 15]. We denote by
d the dimension of the Hilbert space corresponding to
each spin, and by D the number of states kept by the
DMRG method. We assume that the spins at the edges
have dimension d0 ≥ D [14]. At some particular step the
chain is split into two blocks and one spin in between.
The left block (L) contains spins 1, . . . ,M − 1, and the

right one (R) spins M + 1, . . . , N . Then a set of D ×D
matrices As are determined such that the state

|Ψ〉 =

d
∑

s=1

D
∑

α,β=1

As
α,β |α〉L ⊗ |s〉M ⊗ |β〉R, (1)

minimizes the energy. The states |α〉L,R are orthonormal,
and have been obtained in previous steps. They can be
constructed using the recurrence relations

|α〉L =

D
∑

α′=1

d
∑

s=1

U
[M−1],s
α,α′ |s〉M−1 ⊗ |α′〉L′ , (2)

where the block L′ contains the spins 1, . . . ,M − 2. The
new matrices U [M ],s are determined from As and fulfill

d
∑

s=1

U [M ],s
(

U [M ],s
)†

= 1. (3)

For the blocks consisting of the edge spins alone, the |α〉
are taken as the members of an orthonormal set.

In order to give a pictorial representation of the above
procedure we introduce at site M two auxiliary D–level
systems, aM and bM . The corresponding Hilbert spaces
Ha,b are spanned by two orthonormal bases |α〉a,b, re-
spectively. We take L and aM (and also R and bM ) in
the (unnormalized) maximally entangled state

|φ〉 :=

D
∑

α=1

|α〉 ⊗ |α〉, (4)

We can always write |Ψ〉 = PM |φ〉L,aM
|φ〉R,bM

, where PM

maps Ha⊗Hb → HM , with HM the space corresponding
to the M–th spin and [cf. (1)]

PM =

d
∑

s=1

D
∑

α,β=1

As
α,β |s〉〈α, β|. (5)

In fact, we can proceed in the same way at any other site
k 6= 1,M,N by defining two auxiliary systems ak and bk
and a map Qk defined as in (5) but with the matrices U
instead of the A. For the edge spins 1 and N we define a
single auxiliary system b1 and aN , respectively and define

http://arXiv.org/abs/cond-mat/0404706v1
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FIG. 1: Schematic picture of the DMRG method for the
B •B (a) and the B • •B (b) configurations. Horizontal lines
represent maximally entangled states |φ〉, the ellipses and cir-
cles (squares) the operators Q (P ) which map the auxiliary
system into the physical ones.

accordingly the operators Q1,N which now map Hb,a →
H1,N . Thus, the state Ψ is then obtained by applying
the operatorsQ1 . . . , , PM , . . . QN to the set of maximally
entangled states φ between the auxiliary systems bk and
ak+1 (k = 1, . . . , N − 1) [see Fig. 1(a)].

The DMRG procedure can be now represented as fol-
lows. At location M , one finds an operator PM acting on
the subsystems aM and bM by determining the matrices
As. From them, one obtains the operatorQM and goes to
the next step at locationM+1. One proceeds in the same
way, moving to the right, until one reaches the location
N . At that point, one starts moving to the left until one
reaches the location 1 at which point it moves again to
the right. The procedure is continued until a fixed point
for the energy is reached, something which always occurs
since the energy is a monotonically decreasing function
of the step number. This proves that DMRG with the
B •B is a variational method which always converges.

The more standard scenario (B • •B) is represented in
Fig. 1(b). The operator PM acts on the auxiliary subsys-
tems aM and bM+1 and maps Ha ⊗Hb → HM ⊗HM+1.
In this picture [for both configurations, Figs. 1 (a,b)] it is
very clear that the two edge spins are treated on a very
different footing since they are represented by a single
auxiliary system which is not entangled to any other.

In the case of a problem with PBC a slight modification
of the scheme is used [2]. The idea is to still separate
the system into two blocks and two spins as before but
now with the configuration B • B•. This ensures the
sparseness of the matrices one has to diagonalize and
thus it increases the speed of the algorithm [2]. One
can draw the diagram corresponding to this procedure
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FIG. 2: Proposed configurations for the case of PBC. One
may also use two spins instead of one

in a similar way as in Fig. 1. The important point is
that still there are always two sites (left most and right
most of both blocks B) which are treated differently since
they are represented by a single auxiliary spin which is
not entangled to any other. In our opinion, this is the
reason of the poor performance of the DMRG method for
problems with PBC.

The method we propose is very clear in terms of this
picture (Fig. 2). One has to substitute at all sites k the
spin by two auxiliary systems ak and bk of dimension
D, with bk and ak+1 (with aN+1 := a1) in a maximally
entangled states and find the maps Pk : Ha ⊗Hb → Hk

which lead to a state

|Ψ〉 = P1 ⊗ P2 . . . PN−1 ⊗ PN |φ〉⊗N , (6)

with the minimal energy. This minimization can be per-
formed in a similar way to the one used in the standard
DMRG method. Before showing how to do this in prac-
tice, we derive some formulas in terms of these operators.
We write

Pk =
d

∑

s=1

|s〉〈ϕ[k]
s |, 〈ϕ[k]

s | =
∑

α,β

B
[k],s
α,β 〈α, β|. (7)

Thus, the problem is solved once the states ϕ (or equiva-
lently, the matrices B) are determined. Note that start-
ing from these states, it is possible to calculate expecta-
tion values of products of local observables [4], since

〈Ψ|O1 . . .ON |Ψ〉 = Tr
(

E
[1]
O1
. . . E

[N ]
ON

)

, (8)

where

E
[k]
O =

d
∑

s,s′=1

〈s|O|s′〉B[k],s ⊗
(

B[k],s
)∗

. (9)

Thus, the main idea to perform the minimization is very
simple. Given the Hamiltonian H describing the system,
one chooses one site M and writes the energy as

E =
〈Ψ|H |Ψ〉

〈Ψ|Ψ〉
=

〈ψ[M ]|HM |ψ[M ]〉

〈ψ[M ]|NM |ψ[M ]〉
, (10)

where |ψ[M ]〉 = ⊕s|ψ
[M ]
s 〉 is a vector built by concate-

nating the ψ
[M ]
s , and NM and HM are d×D2 hermitian
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square matrices which are built using the vectors ψ
[k]
s

at k 6= M . For example, NM = ⊕sN0 is a block diag-
onal matrix with identical blocks N0 which has matrix
elements (N0)(α,α′),(β,β′) = (Ñ0)(α,β),(α′,β′), with

Ñ0 = E
[M+1]
1

. . . E
[N ]
1
E

[1]
1
. . . E

[M−1]
1

. (11)

Thus, at this step the operator PM is found by solving
the generalized eigenvalue problem

HM |ψ[M ]〉 = λNM |ψ[M ]〉, (12)

with λ minimum, which in turns gives the energy at this
step. Then one chooses another site and proceeds in the
same way until the energy converges. At the end we have
all the Pk and can evaluate all expectation values.

The above method is not very efficient numerically.
First, the matrix N0 may be ill conditioned. Second, one
stores many matrices (∼ N2) and performs many matrix
multiplications (∼ N2) at each step. Now we explain
how one can make the method much more efficient.

Let assume that we have a set of spins in a ring. The
idea is to determine operators Pk in a clockwise order
(first P1, then P2, until PN−1), then improve them fol-
lowing a counterclockwise ordering (from PN to P2), then
again clockwise, until the fixed point is reached. At each
step, a normalization condition similar to (3) is imposed,
depending on whether we are in a clockwise or counter-
clockwise cycle, which makes the matrix NM well be-
haved. On the other hand, at each step only the opera-
tors which are strictly needed in later steps are calculated
in an efficient way and stored.

The normalization condition is based on the follow-
ing fact. Given the state Ψ, characterized by matrices
B, if we substitute B[M ],s → B[M ],sX := U [M ],s and
B[M+1],s → X−1B[M+1],s, where X is a nonsingular ma-
trix, we obtain the same state. Analogously, we can
substitute B[M ],s → Y B[M ],s := V [M ] and B[M−1],s →
B[M−1],sY −1. We choose X in the clockwise cycles to
impose (3) and Y in the counterclockwise ones to impose

d
∑

s=1

(

V [M ],s
)† (

V [M ],s
)

= 1. (13)

Thus, at the point of determining the operator PM ,

|Ψ〉 = Q1 ⊗ . . . QM−1 ⊗ PM ⊗ Q̃M+1 . . .⊗ Q̃N |φ〉⊗N ,(14)

where Qk and Q̃k are defined as in (7) but with U and
V instead of B, respectively. Thus, the operators X and
Y are all of them moved over, such that they are now
included in those corresponding to PM . It can be eas-
ily shown that these conditions on the operator U (V )
are equivalent to imposing that E1 has the maximally
entangled state |φ〉 as right (left) eigenvector with eigen-
value 1. This is immediately reflected in the fact that the
matrix NM is better behaved, which makes the problem
numerically stable.

Let us now illustrate how the procedure works with

simplest nearest neighbor Hamiltonian σ
[k]
z σ

[k+1]
z , namely

the Ising Model. Let us assume that we are running
the optimization of the operators clockwise and that we
want to determine PM . So far, in previous steps, apart
from the matrices U and V , we have stored: (a) For each
k < M , the following four operators:

rk := E
[1]
1
E

[2]
1
. . . E

[k−2]
1

E
[k−1]
1

, (15a)

sk := E[1]
σz
E

[2]
1
. . . E

[k−2]
1

E
[k−1]
1

, (15b)

tk := E
[1]
1
E

[2]
1
. . . E

[k−2]
1

E[k−1]
σz

, (15c)

hk :=
k−2
∑

n=1

E
[1]
1
E

[2]
1
. . . E[n]

σz
E[n+1]

σz
. . . E

[k−2]
1

E
[k−1]
1

,(15d)

(b) For each k > M other four similar operators which
contain products from E[k] to E[N ]. With them, one can
build HM and N0 by few matrix multiplications and thus
determine PM by solving (12). From it, QM is deter-
mined. Then, we construct rM+1, sM+1, tM+1 and hM+1

starting from rM , sM , tM and hM [16]. We continue in
the same vein, finding four matrices at each step, and
storing them, until we reach N . Then we start moving
counterclockwise and start constructing the correspond-
ing four matrices at each step. Notice that in order to
construct the matrices HM and N0 we will have to use
the stored matrices (15) which were determined when we
were moving clockwise. Thus, with this procedure we
have to store of the order of 4N matrices of dimension
D2 (apart from the matrices U , V and the last B’s) but
the number of operations per step is independent of N .
At the end, when we have reached the fixed point, we
can determine the expectation value of any operator by
using (8) and determining the required matrices using
(9). Note that if the problem has translational symme-
try, then all these evaluations are even simpler.

We have applied the above method to the spin 1/2
Heisenberg chain. We have plotted in Fig. 3 the ener-
gies obtained as a function of D and compared them
with those obtained by the standard DMRG method with
OBC and PBC. From the figure it is clear that the ac-
curacies we obtain are comparable with those obtained
with DMRG for problems with OBC but much better
than for PBC. We have determined the errors by com-
paring with the exact results [17]. In the insert of Fig. 3
we have plotted the local bond strength 〈S[k]

S
[k+1]〉 as a

function of k. As expected, the result is independent of
the position k, as opposed to what occurs with OBC.

Finally we show that the picture introduced here may
be valuable to understand the properties of states Ψ in
terms of the language and tools developed in the field
of QIT. First, one can easily see that the entropy of the
block formed by systems (k0, k0 + 1, . . . , k1) is bounded
by 2 log2(D), as this block is connected to the rest only
via ak0

and bk1+1, and thus the rank of the reduced den-
sity operator for the block is bounded by the product
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FIG. 4: General states can be expressed in the form (6).

of the dimensions of the corresponding Hilbert spaces.
Secondly, it allows us to show that any state can be writ-
ten in the form (6) (MPS [4, 6]) if we choose D = dN

(actually, D = d⌊
N

2
⌋ is sufficient). We consider ak and

bk as composed of d–level subsystems, a1
k, . . . , a

N
k and

b1k, . . . , b
N
k , respectively, and write |φ〉 as a tensor product

of maximally entangled states φd between blk and al
k+1.

For k = 2, . . . , N , we choose the operators Pk = 1ak

k

⊗〈ηk|

where |ηk〉 is a state for all particles but ak
k, and contains

|φd〉 for each pair al
k-blk (l > k) and |0〉 for the rest. The

action of Pk is to teleport the entangled pairs such that
at the end one has one entangled pairs between the first
system and all the rest (Fig. 4), while leaving all the other
auxiliary particles in |0〉. Finally, the operator P1 is the
product of two operators. The first acts on particles a1

and transforms |0〉N → |Ψ〉. The second is 1a1

1

⊗ 〈η1|,

where |η1〉 = |0〉b1 ⊗ |φd〉
⊗N−1. This operator first pre-

pares the desired state Ψ in particles a1 and then uses
the available entangled pairs to teleport it to the the rest
of the particles.

In summary, we have given a pictorial view of the
DMRG method and have identified the reason of its poor
performance for problems with PBC. Our picture imme-
diately leads to a modified version of the DMRG method
which dramatically improves the results. This is done at
the expenses of no longer using sparse matrices, some-
thing which limits its applications. Nevertheless, we be-
lieve that the method may allow us to treat problems in
condensed matter systems which so far have been diffi-
cult to tackle with the standard DMRG method. In any
case, the present work illustrates how the developments
made in QIT during the last years may prove useful in
other branches of Physics.
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