I want to solve extended Hubbard model
<HAMILTONIAN name="fermion Hubbard">
<PARAMETER name="mu" default="0"/>
<PARAMETER name="t" default="1"/>
<PARAMETER name="V" default="0"/>
<PARAMETER name="t'" default="0"/>
<PARAMETER name="V'" default="0"/>
<PARAMETER name="U" default="0"/>
<PARAMETER name="t0" default="t"/>
<PARAMETER name="t1" default="t'"/>
<PARAMETER name="V0" default="V"/>
<PARAMETER name="V1" default="V/8"/>
<PARAMETER name="V2" default="V/27"/>
<PARAMETER name="V3" default="V/64"/>
<PARAMETER name="V4" default="V/125"/>
<PARAMETER name="V5" default="V/216"/>
<BASIS ref="fermion"/>
<SITETERM site="i">
<PARAMETER name="mu#" default="mu"/>
<PARAMETER name="U#" default="U"/>
-mu#*n(i)+U#*n_up(i)*n_down(i)
</SITETERM>
<BONDTERM source="i" target="j">
<PARAMETER name="t#" default="0"/>
<PARAMETER name="V#" default="0"/>
-t#*fermion_hop(i,j) + V#*n(i)*n(j)
In the other code, also, the boundary potential (V/2[n_1+n_L]) is added.
I means that <n(i)> must be uniform throughout the lattice as [2,0,2,0,....,0,2] in CDW phase.
but <n(i)> evaluated using ALPS is
modulated by a wave. I want to use this potential to uniform this wave throughout the lattice as we expect for the ground state of infinite lattice. In this way, the effect of OBC is reduced.