Hi Ian,1. The id of the edge has to be an index, as for the vertex.2. In your Hamiltonian definition you need to add a bond term like coeff#*cdag(i)*c(j). The value of coeff# will then be determined by the edge type between site i and j.Since you want something like all-to-all interaction, you cannot use the inhomogeneous lattice definition, therefore you cannot use the coordinates inside functions (as you are doing with "abs()").Michelebut maintained the abs(i-j) as I'm not quite sure what to substitute with and it still didn't work (as can probably expected). My question has to do in what to substitute this term with.With extra parameters like this:And the second method, I tried using this lattice:Hello again.The first method unfortunately didn't work.
<LATTICES>
<GRAPH name = "long range kitaev chain" dimension="1" vertices="5" edges="10">
<VERTEX id="1" type="0"><COORDINATE>1</COORDINATE></VERTEX>
<VERTEX id="2" type="1"><COORDINATE>2</COORDINATE></VERTEX>
<VERTEX id="3" type="1"><COORDINATE>3</COORDINATE></VERTEX>
<VERTEX id="4" type="1"><COORDINATE>4</COORDINATE></VERTEX>
<VERTEX id="5" type="0"><COORDINATE>5</COORDINATE></VERTEX>
<EDGE source="1" target="2" id="1-2" type="1"vector="1"/>
<EDGE source="1" target="3" id="1-3" type="2"vector="1"/>
<EDGE source="1" target="4" id="1-4" type="3"vector="1"/>
<EDGE source="1" target="5" id="1-5" type="4"vector="1"/>
<EDGE source="2" target="3" id="2-3" type="1"vector="1"/>
<EDGE source="2" target="4" id="2-4" type="2"vector="1"/>
<EDGE source="2" target="5" id="2-5" type="3"vector="1"/>
<EDGE source="3" target="4" id="3-4" type="1"vector="1"/>
<EDGE source="3" target="5" id="3-5" type="2"vector="1"/>
<EDGE source="4" target="5" id="4-5" type="1"vector="1"/>
</GRAPH>
</LATTICES>
'coeff1' :1,
'coeff2' :2,
'coeff3' :3,
'coeff4' :4Thanks in advance.Ian FelisminoOn Thu, Jun 29, 2017 at 1:01 PM, Michele Dolfi <dolfim@phys.ethz.ch> wrote:I think you need:<INHOMOGENEOUS><EDGE/></INHOMOGENEOUS> For the second case, you need to define a graph with different edge types, then you can assign the values in the parameters with:coeff0=…coeff1=……Note that there is no automatic lattice graph for an all-to-all graph. This you need to define yourself in a graph file.MicheleOn 28 Jun 2017, at 09:38, John Ian Kenneth E. Felismino <jfelismino@nip.upd.edu.ph> wrote:Ian FelisminoThanks.and it still didn't work.Hello again.I tried using an inhomogenous periodic 1D chain lattice defined as
<LATTICEGRAPH name = "inhomogeneous periodic chain lattice" vt_skip="true">
<FINITELATTICE>
<LATTICE ref="chain lattice"/>
<EXTENT dimension="1" size="L"/>
<BOUNDARY type="periodic"/>
</FINITELATTICE>
<UNITCELL ref="simple1d"/>
<INHOMOGENEOUS><VERTEX/></INHOMOGENEOUS>
</LATTICEGRAPH>
For the second solution, how do you assign coefficients for every source and target? I need to find the difference for varying (long) ranges.On Wed, Jun 28, 2017 at 12:53 PM, Michele Dolfi <dolfim@phys.ethz.ch> wrote:Actually both the “abs” and “^” operators seem to be allowed, but the problem might come from the (i-j) term.Using the coordinates in the coefficients is instead a non-trivial feature. It only works if you define the lattice as inhomogeneous. You should see some examples non the lattices.xml file.As an alternative solution, you could define the lattice as a graph and set independent coefficients on the bonds and edges. You should find other examples in the mailing list, or on this page https://alps.comp-phys.org/mediawiki/index.php/Tutorial s:LatticeHOWTO:SimpleGraphs Best,MicheleOn 27 Jun 2017, at 08:14, John Ian Kenneth E. Felismino <jfelismino@nip.upd.edu.ph> wrote:<Kitaev Hamiltonian.png>Thanks.Hi!The hamiltonian I'm using is attached as a picture file. As you can see, the bond terms are proportional to abs(i - j)^\alpha. i was wondering if this is possible in Alps because I have tried doing it (crudely) with DMRG and found that it did not produce an output xml. I had simply added the term "/abs(i-j)^alpha#" in my hamiltonian. When I remove this term, the Hamiltonian works, so clearly the problem is with this proportionality term.Ian Felismino
----
Comp-phys-alps-users Mailing List for the ALPS Project
http://alps.comp-phys.org/
List info: https://lists.phys.ethz.ch//listinfo/comp-phys-alps-users
Archive: https://lists.phys.ethz.ch//pipermail/comp-phys-alps-users
Unsubscribe by writing a mail to comp-phys-alps-users-leave@lists.phys.ethz.ch .
----
Comp-phys-alps-users Mailing List for the ALPS Project
http://alps.comp-phys.org/
List info: https://lists.phys.ethz.ch//listinfo/comp-phys-alps-users
Archive: https://lists.phys.ethz.ch//pipermail/comp-phys-alps-users
Unsubscribe by writing a mail to comp-phys-alps-users-leave@lists.phys.ethz.ch .
----
Comp-phys-alps-users Mailing List for the ALPS Project
http://alps.comp-phys.org/
List info: https://lists.phys.ethz.ch//listinfo/comp-phys-alps-users
Archive: https://lists.phys.ethz.ch//pipermail/comp-phys-alps-users
Unsubscribe by writing a mail to comp-phys-alps-users-leave@lists.phys.ethz.ch .
----
Comp-phys-alps-users Mailing List for the ALPS Project
http://alps.comp-phys.org/
List info: https://lists.phys.ethz.ch//listinfo/comp-phys-alps-users
Archive: https://lists.phys.ethz.ch//pipermail/comp-phys-alps-users
Unsubscribe by writing a mail to comp-phys-alps-users-leave@lists.phys.ethz.ch .
----
Comp-phys-alps-users Mailing List for the ALPS Project
http://alps.comp-phys.org/
List info: https://lists.phys.ethz.ch//listinfo/comp-phys-alps-users
Archive: https://lists.phys.ethz.ch//pipermail/comp-phys-alps-users
Unsubscribe by writing a mail to comp-phys-alps-users-leave@lists.phys.ethz.ch .
----
Comp-phys-alps-users Mailing List for the ALPS Project
http://alps.comp-phys.org/
List info: https://lists.phys.ethz.ch//listinfo/comp-phys-alps-users
Archive: https://lists.phys.ethz.ch//pipermail/comp-phys-alps-users
Unsubscribe by writing a mail to comp-phys-alps-users-leave@lists.phys.ethz.ch .